A BAR domain-mediated autoinhibitory mechanism for RhoGAPs of the GRAF family.

نویسندگان

  • Alexander Eberth
  • Richard Lundmark
  • Lothar Gremer
  • Radovan Dvorsky
  • Katja T Koessmeier
  • Harvey T McMahon
  • Mohammad Reza Ahmadian
چکیده

The BAR (Bin/amphiphysin/Rvs) domain defines an emerging superfamily of proteins implicated in fundamental biological processes by sensing and inducing membrane curvature. We identified a novel autoregulatory function for the BAR domain of two related GAPs' (GTPase-activating proteins) of the GRAF (GTPase regulator associated with focal adhesion kinase) subfamily. We demonstrate that the N-terminal fragment of these GAPs including the BAR domain interacts directly with the GAP domain and inhibits its activity. Analysis of various BAR and GAP domains revealed that the BAR domain-mediated inhibition of these GAPs' function is highly specific. These GAPs, in their autoinhibited state, are able to bind and tubulate liposomes in vitro, and to generate lipid tubules in cells. Taken together, we identified BAR domains as cis-acting inhibitory elements that very likely mask the active sites of the GAP domains and thus prevent down-regulation of Rho proteins. Most remarkably, these BAR proteins represent a dual-site system with separate membrane-tubulation and GAP-inhibitory functions that operate simultaneously.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Chk1 kinase by autoinhibition and ATR-mediated phosphorylation.

The checkpoint kinase Chk1 undergoes ATR-mediated phosphorylation and activation in response to unreplicated DNA, but the precise mechanism of Chk1 activation is not known. In this study, we have analyzed the domain structure of Xenopus Chk1 and explored the mechanism of its activation by ATR-mediated phosphorylation. We show that the C-terminal region of Xenopus Chk1 contains an autoinhibitory...

متن کامل

Identification of an autoinhibitory domain of p21-activated protein kinase 5.

The p21-activated protein kinases (Paks) are serine/threonine protein kinases activated by binding to Rho family small GTPases, Rac and Cdc42. Recently, Pak family members have been subdivided into two groups, I and II. Group II Paks, including Pak4, Pak5, and Pak6, does not contain the highly conserved autoinhibitory domain that is found in the group I Paks members, i.e. Pak1, Pak2, and Pak3. ...

متن کامل

The Unique Mechanism of SNX9 BAR Domain for Inducing Membrane Tubulation

Sorting nexin 9 (SNX9) is a member of the sorting nexin family of proteins and plays a critical role in clathrin-mediated endocytosis. It has a Bin-Amphiphysin-Rvs (BAR) domain which can form a crescent-shaped homodimer structure that induces deformation of the plasma membrane. While other BAR-domain containing proteins such as amphiphysin and endophilin have an amphiphatic helix in front of th...

متن کامل

Versatile Membrane Deformation Potential of Activated Pacsin

Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce...

متن کامل

Pareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm

Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 417 1  شماره 

صفحات  -

تاریخ انتشار 2009